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Energy and symmetry of self-assembled two-dimensional dipole clusters in magnetic confineme
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We report on confined two-dimensional~2D! dipole clusters formed by small ferromagnetic particles floating
at the liquid-air interface and confined by nonuniform external magnetic field. The particles self assemble into
hexagonally ordered clusters whose lattice constant can be magnetically tuned. We study the areaS, the energy
E, the chemical potentialm, and the lattice constanta, of 2D clusters as functions of particle numberN for
N,130. We develop a continuum approximation which accounts fairly well for the smooth part of
m(N), S(N), anda(N) dependences. In addition to these dependences, we observe quasiperiodic fluctuations
with dips at ‘‘magic’’ numbers corresponding to particularly symmetric particle configurations. We demonstrate
that these fluctuations are related to the cluster symmetry and to the cluster center of mass position.

DOI: 10.1103/PhysRevE.65.061405 PACS number~s!: 68.65.2k, 68.43.Hn, 36.40.2c, 42.70.Qs
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I. INTRODUCTION

Artificial crystals draw much attention as model syste
by which to study quantum dots@1#, quantum dot arrays
melting, crystallization, and lattice defects@2–8,10#. They
can be fabricated step by step or can be formed spont
ously in the system of interacting particles, such as su
paramagnetic particles in fluids@9,10#, charged dust particle
in plasma@11#, vortices@12,13#, electrons on surface of th
liquid helium @14#, etc. Recently, artificial crystals have a
tracted much interest due to their potential application
photonic band-gap materials@15#. In this context, self-
assembled structures resulting from van der Waals, capil
@16#, electric @8#, and magnetic@3–6,9,17–19# interactions
are promising. An important issue here is tunability whi
can be achieved through external fields. In particular, a m
netic field can rotate the particles@20,21#, and affect crystal
symmetry@19# or the lattice constant@10,18,22#.

Self-assembly driven by magnetic forces can be reali
in the system of magnetic particles at the air-liquid interfa
~interfacial colloidal crystals! @23# or in the bulk of the liquid
~ferrofluids!. The particles in ferrofluids self-assemble in
nonperiodic three-dimensional~3D! patterns@24# and are
less promising as photonic crystals. Magnetic particles at
liquid-air interface form 2D periodically ordered clusters a
thus are much more promising as photonic crystals. Altho
floating superparamagnetic particles have been used for s
ies of 2D melting@4,5#, floating ferromagnetic particles wer
used to demonstrate magnetic interactions@9,25,26# and vor-
tices in superconductors@27#, application of floating ferro-
magnetic particles for tunable photonic crystal is quite nov
We have recently built a photonic crystal using a stack of
self-assembled arrays of ferromagnetic particles on liquid
terface with magnetic-field-dependent lateral lattice cons
@18#, and observed a tunable photonic stop band in the
crowave range@22#. This raises an interesting question
what determines the structure, size, and lattice constan
the clusters of magnetic particles. In this paper, we st
experimentally and theoretically 2D clusters of macrosco
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ferromagnetic particles on a stationary liquid surface in
magnetic confinement. We explore the dependence of t
thermodynamic properties such as area, lattice constant
ergy, and chemical potential on particle number. We show
interesting interplay between continuum and discrete prop
ties of these clusters. This is an interesting example of
condensed matter in confined geometry and under exte
field.

II. EXPERIMENTAL PROCEDURE AND PROCESSING
OF THE RESULTS

Our experimental setup has been designed to represe
closely as possible the generic system of interacting dipo
in a parabolic confinement. The ‘‘dipoles’’ are Nd-Fe-B fe
romagnetic disks~Fig. 1! encapsulated within a light materia
floating on the liquid~water, decane, etc.!. Particle magnetic
moments are perpendicular to the liquid interface, so the
ticles repel each other and self-assemble into hexagon
ordered clusters which, in the absence of an external m
netic field, fill the whole container. The liquid serves tw
goals:~i! lubrication—to allow self-assembly driven by wea
lateral forces, and~ii ! stabilization against the flip. A con
tainer with the particles and liquid is encircled by a curre
carrying coil ~radius r c545 cm, height 5 cm, number o
turnsNt5127) which provides an inhomogeneous magne
field in which to confine particles together and to vary t
size and the lattice constant of the resulting cluster. The m
netic field of the coil is@28#

FIG. 1. Experimental setup. Small permanent magnets enca
lated within styrofoam disks float on the surface of the water. Th
repel each other and are confined within a nonuniform magn
field produced by an external coil. Container diameter is 90 c
magnet diameter is 5 mm, float diameter is 2.5 cm.
©2002 The American Physical Society05-1
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B~r !5
m0INt

2p S Kel

r c2r
1

Eel

r c1r D , ~1!

whereI is the current,Kel(k) andEel(k) are elliptical inte-
grals of the first and second kind, andk254r cr /(r c1r )2.
For r ,0.9r c , Eq. ~1!, with an accuracy of 2.5%, can b
approximated by

B'B0S 110.75
r 2

r c
22r 2D , ~2!

whereB05m0INt/2r c is the field in the center of the coil
For r !r c , Eq. ~1! reduces to parabolic dependenceB;r 2.

In a moderate external magnetic field the particles
oriented in such a way that their magnetic moments are
allel to each other and perpendicular to the liquid surface
higher fields the particles become spontaneously tilted
the cluster splits into a few domains with different orien
tion of the particle magnetic moment with respect to t
vertical. This resembles the smectic-A–smectic-C phase
transition in liquid crystals. At even higher fields, flip inst
bility occurs, the tilt angle becomes 90°, and the cluster c
lapses. This limits the range of magnetic fields that can
used for such confinement.

The particle configuration is determined by the radia
dependent part of the Hamiltonian which, for macrosco
particles at ambient temperature, reduces to the sum of
pair interaction energy and the field energy,

H5Eint1Ef ield5
m0

4p (
i , j

mimj

ur i2r j u3
1(

i 51

N

miB~r i !. ~3!

Here,mi and r i are particle magnetic moment and positio
respectively. Generally, Eq.~3! allows us to find the energy
for known particle positions. This tedious task is facilitat
by the following analysis. For identical particles we intr
duce distance scale and energy scale,

r 05S m0m

3pB0
D 1/5

, E05
m0m2

4pr 0
3
, ~4!

and recast Eq.~3! in dimensionless form

E5Eint1Ef ield5(
i , j

1

ur i2r j u3
1(

i 51

N r i
2

12
r i

2

r c
2

, ~5!

wherer i andr c are dimenssionless parameters. Note that
lattice constanta scales withr 0. For superparamagnetic pa
ticles r 0 is field independent, sincem/B05const. Con-
versely, for ferromagnetic particles withm5const, the lattice
constant is field dependent:a,r 0;B0

21/5 @18#. That is why
ferromagnetic particles may be more advantageous in
field of tunable photonic crystals than superparamagn
particles@4,5,10,17#.

Our goal is to find cluster energy for known particle p
sitions. To this end we further simplify Eq.~5!. We consider
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dE, the energy deviation upon small uniform deformati
r i→ r̃ i(11u), whereu!1 and r̃ i is the equilibrium particle
position. In the equilibrium state the linear term indE van-
ishes, leading to

23uẼint12u(
i 51

N r̃ i
2

S 12
r̃ i

2

r c
2D 2 50, ~6!

whereẼ is the energy in the equilibrium. Therefore,

Ẽint5
2

3 (
i 51

N r̃ i
2

S 12
r̃ i

2

r c
2 D 2 ~7!

and Eq.~5! reduces to

Ẽ5(
i 51

N r̃ i
2

12
r̃ i

2

r c
2
S 11

2/3

12
r̃ i

2

r c
2
D . ~8!

While Eq. ~5! allows us to find energy by summation ofN2

terms, Eq.~8! contains onlyN terms and is less demandin
with respect to accuracy of the experimentally determin
particle positions. However, Eq.~8! strongly relies on the
dipole-dipole interaction law,Eint;1/r 3. Since we operate
with finite-size particles, while Eq.~3! assumes point di-
poles, the validity of Eq.~3! should be verified. Indeed, in
teraction energy of two parallel axially magnetized disks~di-
ameterD55 mm, heighth52 mm) situated at the distanc
r;3 –7 cm (r @D,h) is Eint5(m0m2/4pr 3)(113D2/8r 2

2h2/4r 2
•••). In our case, the second term in the brack

contributes;1%, the third term contributes;0.1%. Contri-
bution of weak attractive capillary forces is also very sm
~0.1%!, therefore, Eq.~8! is valid within 1%.

We focus here on the dependence of cluster parameter
the number of particles. We varied the particle number
adding/removing a particle at the cluster boundary, and t
measured particle positions in the equilibrium. To acceler
equilibration we applied ‘‘stimulated annealing;’’ in othe
words, we stirred the particles using an oscillating magne
field ~Fig. 1! with slowly decreasing amplitude. After sever
minutes of stirring and subsequent relaxation, the partic
self-assemble into a well-ordered cluster with a quite rep
ducible configuration which remains stable for several da
We maintained constant external fieldB050.6 mT, at which
the spontaneous tilt is absent, took the image of the clus
and determined equilibrium particle positions. Then we c
culated the energy using Eq.~8!. The repeatability of energy
determination is;0.1–0.2 %. This was deduced from se
eral experiments with the same cluster which was sha
between the measurements and then allowed to relax.~This
procedure sometimes results in a slightly different clus
configuration, i.e., metastable states do occur. However,
difference in energy between these states does not ex
;0.15%.! With known energy we find the chemical pote
5-2
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ENERGY AND SYMMETRY OF SELF-ASSEMBLED TWO- . . . PHYSICAL REVIEW E 65 061405
tial, m5]E/]N5E(N)2E(N21). We calculate the scaler 0
@Eq. ~4!# from the interparticle distances in small cluste
~2–7 particles! whose configurations are obvious, and fi
r 057.05 cm. This yields a particle magnetic moment ofm
538 emu, which is consistent with the saturation magn
zation of Nd-Fe-B (m0M51.22 T). The energy scale@Eq.
~4!# is E050.41mJ. We perform Voronoi construction on th
cluster image and find cluster area,S. This can be defined a
the sum of areas of Voronoi polyedra, or asS5pD2/4 where
D is the cluster diameter. The areas calculated accordin
these two definitions differ by 3.5%, so we adopted an in
mediate definitionS5pR2 where R is the averagecluster
radius. Delauney triangulation allows one to find cluster
rimeter P and the number of particles at the peripheryNp .
The lattice constant at the edge is found fromaedge
5P/Np . The lattice constant in the center,a0, is determined
as the average nearest-neighbor distance for the par
which is the closest to the center of the potential (r 50).

III. EXPERIMENTAL RESULTS AND COMPARISON
TO THE MODEL

Figure 2 shows images of several clusters. The clus
with smallN acquire very different forms and can even ha
pentagonal faceting@Fig. 2~a!#, which is usually associate
with quasicrystals@19#. At higher N, the particles are ar
ranged into an almost perfect hexagonal lattice. For smaN,
corresponding to perfect hexagonal packing, the cluster
quires a hexagonal shape@Fig. 2~b!#; for biggerN, the cluster
tends to acquire a circular shape@Fig. 2~c!#, which inevitably
results in deviations from the perfect hexagonal order. T
deviations are of two kinds: elastic strain and defects. Ela

FIG. 2. Cluster images with superimposed Delaunay triang
tion. Gray circles stand for normal coordination number (Z56),
filled circles stand forZ55 ~positive disclination!, and open circles
stand forZ57 ~negative disclination!. ~a! N531—note pentagona
faceting; ~b! N537—a perfect hexagonal packing. Note faceti
and absence of defects;~c! N570—an ordinary cluster. Note a
dislocation ~5–7 pair! attached to a disclination;~d! N585—a
‘‘magic’’ cluster. Note hexagonal structure, circular shape, and
topological disclinations close to the edge.
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strain results primarily from the radial density variation. I
deed, Fig. 3 shows that the lattice constant in the centera0 is
lower than the lattice constant at the edgeaedge. The ratio
aedge/a0 slowly increases withN and for N.50 is ;1.28
~Fig. 3, inset!. The average strain associated with this lattic
constant variation isu;(aedge2a0) /R;4 –5 %. Actually,
the strain is much smaller in the center and increases tow
the edges. When the strain exceeds the elastic l
(;10–15 %) the defects~dislocations and disclinations@6#!
are formed. Apart from six topological disclinations whic
are present in all circular-shaped clusters@Figs. 2~c! and
2~d!# due to competition between the hexagonal ordering
circular-symmetric confinement@1#, many clusters contain
one or few dislocations@Fig. 2~c!#. The dislocations and dis
clinations usually reside in the vicinity of the cluster edg
while the central part of the cluster can be made free
defects. Figure 4 shows the number of dislocations in diff
ent clusters. ForN,110 there are clusters without disloc
tions or with 1–2 dislocations. ForN.110, dislocation den-
sity dramatically increases. Numerical simulations of R
@1# for 2D Coulomb clusters in a parabolic confinement a
suggest a dramatic increase in dislocation density forN
.140.

In what follows, we study the dependence of the clus
properties on particle number. Figure 5 shows almost mo
tonic dependences of the area and chemical potential on
ticle number with some fluctuations. To analyze the smo
part of these dependences we develop a continuum m

-

x FIG. 3. The lattice constant in the centera0 and at the cluster
edgeaedge ~in dimensionless units!. The inset shows their ratio
Continuous lines show prediction of the continuum model~Appen-
dix!. Continuous arrows show magic numbers~primary series! and
dashed arrows show the secondary series. The magic num
strongly correlate with the local minima inaedge(N).
5-3
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and calculate total cluster energy by replacing the sum@Eq.
~5!# by the integral over the cluster area. The simplest
proximation assuming constant particle densityr and para-
bolic confinement yields

E5E
a

R

rS 1

2r 3
1r 2D ds>NS 4

a3
1

R2

2 D . ~9!

Here,R is the cluster radius,a is the lattice constant, andr
'4/pa2. The first term in Eq.~9! representsEint , while the
second term representsEf ield . For parabolic confinemen
their ratio is 2:3@this can be obtained from Eq.~6! by setting
r c→`#, hence, Eq.~9! yields 16/a353R2. Combining it
with the obvious relation,R'aN1/2/2, we find

R5S 3

2D 1/5

N3/10, aa5S 48

N D 1/5

, E;0.98N8/5,

m;1.57N3/5, S;3.69N3/5, K;1.59N, ~10!

whereK5]E/]S is the bulk compression modulus. Equatio
~10! ~dash-dotted line in Fig. 5! underestimates the chemic
potential forN.20 and does not account for the radial de
sity gradient which is clearly observed in Fig. 3~the differ-
ence betweena0 and aedge). A more elaborate model~Ap-
pendix! takes into account~i! spatial variation of the density
~ii ! surface tension, and~iii ! deviation of the potential from
parabolicity. This model results in an algebraic equation@Eq.
~A17!, Appendix# for the spatially dependent density whic
is solved numerically for a given potential and yiel
a(N), S(N), andm(N). This model, with confining potentia
given by Eq.~2!, fits fairly well the experimentally found
S(N) andm(N) ~solid lines in Fig. 5!. Systematic deviations
at smallN are expected and arise from the inadequacy of
continuum approach when only a few particles are pres
Figure 3 shows the prediction of this model for the latti

FIG. 4. The number of dislocations in the 2D clusters as a fu
tion of particle numberN. Dashed line shows exact data, continuo
line is obtained after smoothing. Continuous arrows show ma
numbers~primary series! and dashed arrows show the second
series. The magic numbers correlate with the minimum numbe
dislocations.
06140
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constant. The lattice constant in the center is accounted
fairly well, while the lattice constant at the cluster edge
slightly overestimated.

Since the parabolic confining potential is quite genera
is important to check how deviation from parabolicity affec
cluster structure. We compare our experiment results~Fig. 5,
circles! for the dipole cluster inalmost parabolic confine-
ment@Eq. ~2!# to numerical simulations of the dipole cluste
in strictly parabolicconfinement@29# ~Fig. 5, triangles!. For
N,20 the chemical potentialmexpt almost coincides with the
results of numerical simulationsmnum, while for N
.20, mexpt.mnum. This is expected since for smallN the
particles are close to the center of the coil where the poten
is very close to parabolic, while at biggerN more particles
are in the area where the potential is more rigid than pa
bolic. Therefore, deviation of the confining potential@Eq.
~2!# from parabolicity is important.

Deviations from the smooth dependence. Note fluctuations
on top of smooth dependencesS(N) and m(N) ~Fig. 5!
which at first glance look like noise. Nevertheless, these fl
tuations are quite reproducible, since they are a direct c

-

ic
y
of

FIG. 5. Cluster areaS ~normalized to coil area! and chemical
potentialm @in the units ofE0, see Eq.~4!# as functions of particle
numberN. The circles stand for experimental data~smoothed!. The
triangles show results of numerical simulation@29# for the dipoles
in a parabolic confinement. The dash-dotted line shows predic
of a simplified model@Eq. ~10!# assuming constant density. Th
dashed line shows our model prediction~Appendix! for the para-
bolic confinementB;r 2 and varying density. The solid lines sho
our model predictions~Appendix! for the confining fieldB;r 2

/(12r 2) which has been used in our experiment. Note the go
correspondence between the experimental results and the mod
well as between the numerical results and the corresponding m
prediction. Continuous arrows show magic numbers~primary se-
ries! and dashed arrows show the secondary series. The magic
bers approximately correspond to the centers of plateaus inmexpt.
5-4



m
on

re
ha

b

er
th

un
ec
o-
th
el

th
is

un

ig

e
tr

le
in

la-

la-
ed

i-

-
in
i-
o

ti

e
to
s

ver,
he
ell

us
s
al
w

-
se
are

ini-
i-

m-
est

re
le

ch

lus-
re-
la-

bers

e

ENERGY AND SYMMETRY OF SELF-ASSEMBLED TWO- . . . PHYSICAL REVIEW E 65 061405
sequence of the crystalline order in the cluster. We find si
lar fluctuations in three experimental runs. These fluctuati
appear in all cluster properties and are very prominent inm,
where they amount to 8%. Note regions in whichm and S
hardly change upon the addition of new particles. Cor
sponding clusters are more dense, more symmetric, and
lower energy. Any deviation from high symmetry is accom
panied by energy and area increase.

Although the deviations from the perfect symmetry can
quantified using continuous symmetry measure@32#, we ap-
ply here an approach of Koulakov and Shklovskii@1#, who
numerically studied the particles with Coulomb/hard-sph
interaction in the parabolic confinement, and showed that
position of the cluster center of mass with respect to the
cell may serve as an indicator of a deviation from the perf
symmetry. Reference@1# demonstrated that while the abs
lute position of the cluster center of mass is always at
minimum of the external potential, its position in the unit c
is preferably located at high symmetry points@for a hexago-
nal lattice these are points~A!, ~B!, and~C!—see Fig. 6#. We
measured distribution of the center-of-mass positions in
unit cell of our 2D dipole clusters and indeed found that it
strongly peaked at positions~A!, ~B!, and~C! ~Fig. 6, upper
panel!. The middle panel in Fig. 6 showsNcm , a number of
nearest neighbors at the center-of-mass position, as a f
tion of particle number.@We take one of the points~A!, ~B!,
or ~C! which is the closest to the center of mass and ass
Ncm56 for ~A!, Ncm53 for ~B!, andNcm52 for ~C!#. We
observe that~i! Ncm changes quasiperiodically inN1/2, ~ii !
dependenceNcm vs N exhibits continuous regions where th
center of mass resides in the position of sixfold symme
~A!, and ~iii ! pronounced dips indS/dN occur in these re-
gions. Shallow dips correspond to position~B!. We define
‘‘magic’’ numbers as those corresponding to the midd
points of the plateaus, where the center of mass resides
high-symmetry point. The primary ‘‘magic’’ seriesNm
'18,35,55,85,116••• corresponds to the centers of the p
teaus with Ncm56 and a secondary ‘‘magic’’ seriesNm
'12,25,44,69,100••• corresponds to the centers of the p
teus withNcm53. The primary series may be approximat
by empirical dependenceNm'112.75s(s21);s50,1,2•••
which is related to the perfect hexagonal packing:N51
13s(s21);s50,1,2•••. The width of the plateaus approx
mately corresponds to one crystalline row, or (N/3)1/2. The
clusters with a ‘‘magic’’ or close to ‘‘magic’’ number of par
ticles show almost perfect hexagonal packing and a m
mum of defects~Fig. 4!. Therefore, the center-of-mass pos
tion with respect to the unit cell is indeed a good indicator
cluster ‘‘quality.’’

IV. DISCUSSION AND CONCLUSIONS

In a broad context, dependence of the cluster proper
on the number of particles~Figs. 3–6! reminds us of the
Mendeleev table of elements, in particular, dependence
atomic radius and ionization potential on atomic numb
which also show quasiperiodic oscillations in addition
smooth dependences. Magic clusters are actually analog
noble gases, while the continuum model~Appendix! is
06140
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analogous to the Thomas-Fermi model for atoms. Howe
due to different dimensionality and interaction laws, t
magic numbers are different. While magic numbers are w
known for free-standing 3D clusters@30# and have been
found in computer simulations for 2D clusters with vario
pair interaction laws@1,29,31#, we are unaware of previou
experimentalobservation of magic 2D clusters in a later
confining field. The magic numbers in the system of fe
interacting particles are ubiquitous~chemical elements, nu
cleii, etc.! and usually related to the shell structure of the
systems. The magic clusters are more stable, since they
highly symmetric and are characterized by local energy m
mum. This is probably true for the systems entirely dom
nated by the potential energy, while in general, highly sy
metric configurations do not necessarily have the low
energy~spontaneous symmetry breaking!.

Quasiperiodic fluctuations in cluster properties we
found in numerical simulations for the particles with dipo
@29#, Coulomb, and hard-sphere@1# interactions. The value

FIG. 6. Position of the cluster center of mass. Upper panel—~a!
Unit cell and the positions of high symmetry,~A!, ~B!, and~C!. ~b!
Distribution of the center-of-mass positions in the unit cell. Ea
point corresponds to a cluster with a certain particle numberN.
Note that the center of mass sticks to positions~A!, ~B!, and ~C!.
The centers of wide plateaus corresponding to most symmetric c
ters withNcm56 are denoted by continuous arrows and the cor
sponding ‘‘magic’’ numbers are shown. The centers of shallow p
teaus corresponding to the clusters withNcm53 are denoted by
dashed arrows and the corresponding secondary ‘‘magic’’ num
are shown. Middle panel shows number of nearest-neighborsNcm at
the center-of-mass position. Lower panel showsdS/dN @in dimen-
sionless units, see Eq.~4!#. The magic numbers correlate with th
minima in dS/dN.
5-5
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of fluctuations depends on the pair interaction law, increas
with the rigidity of the interaction potential@1#. Most prob-
ably, the value of the fluctuations also depends on the c
fining potential. Anyway, fluctuations inm that were found in
numerical simulations for the dipole clusters in a parabo
potential@29# ~Fig. 5, triangles! are smaller than those foun
in our experiments with the dipole clusters in a more rig
potential~Fig. 5, circles!.

In what follows, we estimate the value of the fluctuatio
and the width of continuous regions in which the clus
configuration is particularly symmetric. Consider a mag
cluster. Upon addition of new particles it undergoes energ
cally expensive elastic and plastic deformations in orde
keep the center of mass at the position of high symme
This occurs until another position of high symmetry becom
energetically favorable. Upon further addition, a rearran
ment of the whole cluster~avalanche! occurs whereby the
center of mass moves to a large distance, of the order
lattice-constanta. These avalanches are accompanied
fluctuations in cluster properties. Addition of new particles
a magic cluster does not lead to the center-of-mass displ
ment until approximately one crystalline row is added. If t
cluster were incompressible, the area would increase bydS
'SDN/N. In reality,dS is smaller due to relaxation. In fac
immobility of the center of mass means that a highly sy
metric cluster adopts new particles without appreciable
crease in area, namely,dS/dN'0. Indeed, our experimenta
observations show deep minima indS/dN ~Fig. 6!. Corre-
sponding deviation from the smooth dependence is thusdS
'sDN where s5(dS/dN)ave is the area per particle an
DN'(N/3)1/2 ~one crystalline row!. Since s'0.6S/N
@Eq. ~10!#, then dS'0.6S/(3N)1/2. This fluctuation origi-
nates from the cluster relaxation which occurs via elastic
plastic deformations. If the deformationu were purely elas-
tic, then u5dS/2S and the corresponding variation of th
energy or of the chemical potential isdm5KSu2/2'0.1 m,
whereK is the bulk compression modulus. Experimenta
observed fluctuations (0.1–0.05m) are smaller due to plasti
deformation~formation of dislocations!.

We expect that the dislocations reside close to the clu
edge where the strain is maximum. This is confirmed by
experiments. With respect to dislocation arrangement in
clusters, Ref.@1# argues that the dislocations should agg
gate into a grain-boundary concentric to the cluster ou
shell, while Ref.@33# conjectures that the dislocations a
range into a lattice of their own. Which scenario holds
reality may depend on the specific form of~i! the pair inter-
action and~ii ! the confining potential. Further experimen
should clarify this issue.

In conclusion, we demonstrate self-assembled 2D dip
clusters with a magnetically tunable lattice constant. Exp
mentally found dependences of the cluster area, chem
potential, and lattice constant as functions of particle num
are fairly well described by our continuum model. Qua
periodic deviations from the smooth dependencesm(N) and
S(N) occur at certain magic numbers and correspond to
pecially symmetric cluster configurations. These magic cl
ters are characterized by higher stability, lower elastic str
and small number of defects. Position of the cluster cente
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mass with respect to the unit cell is a good indicator of
cluster quality.
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APPENDIX: CONTINUUM MODEL OF A 2D DIPOLE
CLUSTER IN A PARABOLIC CONFINEMENT

Consider a planar assembly of identical magnetic dipo
with magnetic momentm oriented perpendicular to th
plane. The dipoles repel each other and are confined by
inhomogeneous magnetic field with almost parabolic rad
dependenceB5ar 21br 41••• . The particle configuration
is determined by the Hamiltonian which, for macroscop
particles at ambient temperature, reduces to potential en

H5Eint1Ef ield5
m0

4p (
iÞ j

mimj

2ur i2r j u3
1(

i
miB~r i !.

~A1!

The first term here is the pair interaction energy and
second term is the field energy.~The factor of 2 in the de-
nominator of the first term appears because each partic
counted twice!. The interplay between these two terms d
tates particle arrangement. In a radially symmetric magn
field the particles organize into an almost circular clus
centered at the minimum of the magnetic field. Circular sy
metry of the interparticle interaction forces drives the p
ticles into a mostly symmetric configuration, namely, he
agonal lattice, which is, however, distorted due to~i!
competition between the circular-symmetric confinement a
local hexagonal symmetry;~ii ! gradient of confining forces
Our aim is to find the density, energy, and radius of t
cluster as a function of the particle numberN. To solve this
problem, we develop a continuum model and find the re
tion between the energy and the density of the cluster
replacing the sums in@Eq. ~A1!# by the integral. We find

E5E
0

R

~e int1mB!rds, ~A2!

wherer(r ) is the particle density,R is the cluster radius, and

e int~r !5
m0m2

8p E
a*

R r~r 8!ds8

ur2r 8u3
~A3!

is the interaction energy per particle. In contrast to Coulo
clusters where pure continuum approach is possible@34#,
dipole-dipole interaction diverges at short distances, hen
we introduce the cutoffa* distance. Since the main contr
5-6
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bution to the integral@Eq. ~A3!# comes from the neares
neighbors where density is almost constant, we setr(r 8)
5r(r ), perform integration, and find

e int~r !5
m0m2r

8p F2p

a*
2

4REel~r /R!

R22r 2 G . ~A4!

HereEel(k) is the elliptical integral of the second kind whic
for all our practical needs can be replaced by the polynom
approximation,

Eel~k!'
p

2
~12k2!1k2, ~A5!

which is fairly good for 0,k,1. The first term in Eq.~A4!
is the interaction energy per particle in the infinite clust
while the second term represents the finite-size effect or
face correction. The cutoff distancea* is found from the
comparison to the corresponding lattice sum for the 2D i
nite hexagonal lattice of parallel dipoles. Reference@8# cal-
culated this sum and found(1/r i

3511.033/a0
3 , wherea0 is

the lattice constant. The corresponding integral for an infin
cluster with constant density yields

(
1

r i
3
'E

a*

` r~r 8!ds8

ur2r 8u3
52p

r

a*
. ~A6!

Since for the hexagonal latticer58/3A3a0
2, a* '0.88a0

'1.09r21/2. Note thata* depends onr.
Since the integral@Eq. ~A3!# diverges also at the uppe

limit r→R, we introduce another cutoffr * which is deter-
mined from the comparison of Eq.~A4! to the lattice sum for
a particle at the edge of an infinite half-plane, name
(1/r i

356.72/a0
3 . Equation~A4! transforms into

e int~r * !5
2pr

a*
2

2pr

R
2

4r * 2r

R~R22r * 2!
, ~A7!

which results in implicit dependence

r * 'R20.82a* ~r * !. ~A8!

The hydrostatic pressure is found fromp52]e int /]V
which in 2D reduces top52]e int /]s5r2]e int /]r wheres
is the area per particle. Equation~A4! yields the equation of
state

p5
m0m2

4p F1.38pr5/22
2Rr2Eel~r /R!

R22r 2 G . ~A9!

The density is found from the equation describing eq
librium of compressible solid under radial force@35#

]s r

]r
1

s r2sQ

r
1r~r !¹U50. ~A10!

Here,s r andsQ are the radial and azimuthal components
the stress tensor. We express the stresss through the hydro-
static pressurep5(s r1sQ)/2 and rewrite Eq.~A10! as
06140
al
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¹p

r
1

¹@r ~s r2sQ!#

2rr
1¹U50. ~A11!

To solve Eq.~A11! we have to simplify the second term. Fo
a particular case of incompressible~constant density! solid
under parabolic potential@35#, Eq. ~A11! may be recast as

¹p

gr
1¹U50, ~A12!

where

g5~113n!/4, ~A13!

n is the Poisson ratio. The same Eq.~A12! holds for the
liquid ~even compressible! for which n51 and g51. We
assume that Eq.~A12!, with g given by Eq.~A13!, holds also
for our ~compressible! dipole cluster. Results of Ref.@8#
yield Poisson ratio for hexagonally ordered dipole clusten
50.82, hence,g50.865.

Since the pressure is uniquely determined by density,
Eq. ~A12! allows us to introduce the chemical potentialm
¹m5¹U1¹p/gr. We combine Eqs.~A9! and~A12! to find

¹m5m¹B1
m0m2

4pg F2.29p¹~r3/2!2
2R

gr
¹S r2Eel~r /R!

R22r 2 D G ,

~A14!

where in the equilibrium¹m50. The different terms in Eq
~A14! may be estimated as follows. The first term in squa
brackets is the dominant one and represents the bulk inte
energy. The second term represents surface correction a
smaller by a factora0 /R!1 everywhere except at the clust
edge. If the surface correction were totally negligible, th
Eq. ~A14! would yield a power-law dependencer;(R2

2r 2)2/3. We substitute this power-law dependence into E
~A14! and note that the last term may be represented a
gradient of some function

2
1

r
¹S r2Eel~r /R!

R22r 2 D '¹rS p2
r 2

R22r 2D . ~A15!

The elliptical integral has been replaced here by the poly
mial approximation@Eq. ~A5!#. We substitute Eq.~A15! into
Eq. ~A14!, perform integration, and find

m5mB~r !1
m0m2

4pg F2.29pr3/22
2pr

R
1

2rr 2

R~R22r 2!
G

5mB~R!. ~A16!

The first term in the square brackets is the elastic energ
compression and the last two terms represent surface ten

To find the density we introduce dimensionless variab
z5(pR2r)1/2, x5r /R, b(x)5B(r )/B(R) and recast Eq.
~A16! as follows:
5-7
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1.29z312z2S x2

p~12x2!
21D 2gS R

r 0
D 5

@12b~x!#50.

~A17!

Here, r 0 is the distance scale determined by the magn
field @Eq. ~4!#. We solve Eq.~A17! for givenR, x, b(x) and
find z(x,R), r(x,R). The cutoff distancer * is determined
Re

ys

re

.

C.

s

a

tt.

06140
ic

from Eq. ~A8! which reduces toz* 54r * 2/(R22r * 2). Inte-
gration of the density yields the particle number

N~R!5E
0

r*
rds52E

0

x* (R)
z2~x,R!xdx ~A18!

The functionN(R) is reverted resulting in an explicit depen
dence R(N). The chemical potential is found from Eq
~A16!.
.

A.

s.

l

@1# A. A. Koulakov and B. I. Shklovskii, Phys. Rev. B57, 2352
~1998!.

@2# H. Loewen, J. Phys.: Condens. Matter13, R415~2001!.
@3# A. T. Skjeltorp, Phys. Rev. Lett.51, 2306~1983!.
@4# K. Zahn, R. Lenke, and G. Maret, Phys. Rev. Lett.82, 2721

~1999!.
@5# R. Bubeck, C. Bechinger, S. Neser, and P. Leiderer, Phys.

Lett. 82, 3364~1999!.
@6# R. Seshadri and R. M. Westervelt, Phys. Rev. B46, 5142

~1992!.
@7# I. V. Schweigert, V. A. Schweigert, and F. M. Peeters, Ph

Rev. Lett.84, 4381~2000!.
@8# R. E. Kusner, J. A. Mann, and A. J. Dahm, Phys. Rev. B51,

5746 ~1995!.
@9# B. A. Grzybowski, H. A. Stone, and G. W. Whitesides, Natu

~London! 405, 1033~2000!.
@10# X. L. Xu, G. Friedman, K. D. Humfeld, S. A. Majetich, and S

A. Asher, Adv. Mater.13, 1681~2001!.
@11# T. M. O’Neil, Phys. Today52, 24 ~1999!.
@12# L. J. Campbell and R. N. Ziff, Phys. Rev. B20, 1886~1979!.
@13# A. Geim, I. V. Grigorieva, S. V. Dubonos, J. G. S. Lok, J.

Maan, A. E. Filippov, and F. M. Peeters, Nature~London! 390,
259 ~1997!.

@14# C. C. Grimes and G. Adams, Phys. Rev. Lett.42, 795 ~1979!.
@15# J. D. Joannopoulos, R. D. Meade, and J. N. Winn,Photonic

Crystals~Princeton University, Princeton, NJ, 1995!.
@16# N. Bowden, A. Terfort, J. Carbeck, and G. M. Whiteside

Science276, 233 ~1997!.
@17# A. S. Dimitrov, T. Takahashi, K. Furusawa, and K. Nagayam

J. Phys. Chem.100, 3163~1996!; T. Takahashi, A. S. Dimitrov,
and K. Nagayama,ibid. 100, 3157~1996!.

@18# M. Golosovsky, Y. Saado, and D. Davidov, Appl. Phys. Le
v.

.

,

,

75, 4168~1999!; Y. Saado, M. Golosovsky, D. Davidov, and A
Frenkel, Synth. Met.116, 427 ~2001!.

@19# W. J. Wen, L. Y. Zhang, and P. Sheng, Phys. Rev. Lett.85,
5464 ~2000!.

@20# B. Gates and Y. N. Xia, Adv. Mater.13, 1605~2001!.
@21# D. Lacoste, F. Donatini, S. Neveu, J. A. Serughetti, and B.

Van Tiggelen, Phys. Rev. E62, 3934~2000!.
@22# Y. Saado, M. Golosovsky, D. Davidov, and A. Frenkel, Phy

Rev. B ~to be published!.
@23# H. Loewen, J. Phys.: Condens. Matter13, R145~2001!.
@24# P. G. de Gennes and P. A. Pincus, Phys. Kondens. Materie11,

189 ~1970!.
@25# P. Flanders, Am. J. Phys.33, 346 ~1965!.
@26# G. Schwarz,Air Cushion Table Handbook, PHYWE series of

publications~Industrie-Druck GmbH, Gottingen, 1979!.
@27# A. C. Rose-Innes and E. A. Stangham, Cryogenics9, 456

~1969!.
@28# L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii,Electrody-

namics of Continuous Media~Pergamon Press, London, 1984!,
Chap. 4.

@29# A. I. Belousov and Yu. E. Lozovik, Eur. Phys. J. D8, 251
~2000!.

@30# T. P. Martin, Phys. Rep.273, 199 ~1996!.
@31# V. M. Bedanov and F. M. Peeters, Phys. Rev. B49, 2667

~1994!.
@32# H. Zabrodsky, S. Peleg, and D. Avnir, J. Am. Chem. Soc.114,

7843 ~1992!.
@33# Y. V. Nazarov, Europhys. Lett.32, 443 ~1996!.
@34# I. N. Sneddon,Mixed Boundary Value Problems in Potentia

Theory~Wiley, New York, 1966!.
@35# S. P. Timoshenko and J. N. Goodier,Theory of Elasticity

~McGraw-Hill, New York, 1970!.
5-8


